Назад Вперед
ИНФОРМАТИКА И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ
О Проекте Структура Курса

ТЕМА 2. ИЗМЕРЕНИЕ ИНФОРМАЦИИ

2.1. Подходы к измерению информации

При всем многообразии подходов к определению понятия информации, с позиций измерения информации нас интересуют два из них: определение К. Шеннона, применяемое в математической теории информации, и определение А. Н. Колмогорова, применяемое в отраслях информатики, связанных с использованием компьютеров (computer science).
     В содержательном подходе возможна качественная оценка информации: новая, срочная, важная и т.д. Согласно Шеннону, информативность сообщения характеризуется содержащейся в нем полезной информацией - той частью сообщения, которая снимает полностью или уменьшает неопределенность какой-либо ситуации. Неопределенность некоторого события - это количество возможных исходов данного события. Так, например, неопределенность погоды на завтра обычно заключается в диапазоне температуры воздуха и возможности выпадения осадков.
     Содержательный подход часто называют субъективным, так как разные люди (субъекты) информацию об одном и том же предмете оценивают по-разному. Но если число исходов не зависит от суждений людей (случай бросания кубика или монеты), то информация о наступлении одного из возможных исходов является объективной.
     Алфавитный подход основан на том, что всякое сообщение можно закодировать с помощью конечной последовательности символов некоторого алфавита. С позиций computer science носителями информации являются любые последовательности символов, которые хранятся, передаются и обрабатываются с помощью компьютера. Согласно Колмогорову, информативность последовательности символов не зависит от содержания сообщения, а определяется минимально необходимым количеством символов для ее кодирования. Алфавитный подход является объективным, т.е. он не зависит от субъекта, воспринимающего сообщение. Смысл сообщения учитывается на этапе выбора алфавита кодирования либо не учитывается вообще. На первый взгляд определения Шеннона и Колмогорова кажутся разными, тем не менее, они хорошо согласуются при выборе единиц измерения.

2.2. Единицы измерения информации

Решая различные задачи, человек вынужден использовать информацию об окружающем нас мире. И чем более полно и подробно человеком изучены те или иные явления, тем подчас проще найти ответ на поставленный вопрос. Так, например, знание законов физики позволяет создавать сложные приборы, а для того, чтобы перевести текст на иностранный язык, нужно знать грамматические правила и помнить много слов.
     Часто приходится слышать, что сообщение или несет мало информации или, наоборот, содержит исчерпывающую информацию. При этом разные люди, получившие одно и то же сообщение (например, прочитав статью в газете), по-разному оценивают количество информации, содержащейся в нем. Это происходит оттого, что знания людей об этих событиях (явлениях) до получения сообщения были различными. Поэтому те, кто знал об этом мало, сочтут, что получили много информации, те же, кто знал больше, чем написано в статье, скажут, что информации не получили вовсе. Количество информации в сообщении, таким образом, зависит от того, насколько ново это сообщение для получателя.
     Однако иногда возникает ситуация, когда людям сообщают много новых для них сведений (например, на лекции), а информации при этом они практически не получают (в этом нетрудно убедиться во время опроса или контрольной работы). Происходит это оттого, что сама тема в данный момент слушателям не представляется интересной.
     Итак, количество информации зависит от новизны сведений об интересном для получателя информации явлении. Иными словами, неопределенность (т.е. неполнота знания) по интересующему нас вопросу с получением информации уменьшается. Если в результате получения сообщения будет достигнута полная ясность в данном вопросе (т.е. неопределенность исчезнет), говорят, что была получена исчерпывающая информация. Это означает, что необходимости в получении дополнительной информации на эту тему нет. Напротив, если после получения сообщения неопределенность осталась прежней (сообщаемые сведения или уже были известны, или не относятся к делу), значит, информации получено не было (нулевая информация).
     Если подбросить монету и проследить, какой стороной она упадет, то мы получим определенную информацию. Обе стороны монеты "равноправны", поэтому одинаково вероятно, что выпадет как одна, так и другая сторона. В таких случаях говорят, что событие несет информацию в 1 бит. Если положить в мешок два шарика разного цвета, то, вытащив вслепую один шар, мы также получим информацию о цвете шара в 1 бит. Единица измерения информации называется бит (bit) - сокращение от английских слов binary digit, что означает двоичная цифра.
     В компьютерной технике бит соответствует физическому состоянию носителя информации: намагничено - не намагничено, есть отверстие - нет отверстия. При этом одно состояние принято обозначать цифрой 0, а другое - цифрой 1. Выбор одного из двух возможных вариантов позволяет также различать логические истину и ложь. Последовательностью битов можно закодировать текст, изображение, звук или какую-либо другую информацию. Такой метод представления информации называется двоичным кодированием (binary encoding).
     В информатике часто используется величина, называемая байтом (byte) и равная 8 битам. И если бит позволяет выбрать один вариант из двух возможных, то байт, соответственно, 1 из 256 (28). В большинстве современных ЭВМ при кодировании каждому символу соответствует своя последовательность из восьми нулей и единиц, т. е. байт. Соответствие байтов и символов задается с помощью таблицы, в которой для каждого кода указывается свой символ. Так, например, в широко распространенной кодировке Koi8-R буква "М" имеет код 11101101, буква "И" - код 11101001, а пробел - код 00100000.
     Наряду с байтами для измерения количества информации используются более крупные единицы:
     1 Кбайт (один килобайт) = 210 байт = 1024 байта;
     1 Мбайт (один мегабайт) = 210 Кбайт = 1024 Кбайта;
     1 Гбайт (один гигабайт) = 210 Мбайт = 1024 Мбайта.

В последнее время в связи с увеличением объёмов обрабатываемой информации входят в употребление такие производные единицы, как:
     1 Терабайт (Тб) = 1024 Гбайта = 240 байта,
     1 Петабайт (Пб) = 1024 Тбайта = 250 байта.
     Рассмотрим, как можно подсчитать количество информации в сообщении, используя содержательный подход.
     Пусть в некотором сообщении содержатся сведения о том, что произошло одно из N равновероятных событий. Тогда количество информации х, заключенное в этом сообщении, и число событий N связаны формулой: 2x = N. Решение такого уравнения с неизвестной х имеет вид: x=log2N. То есть именно такое количество информации необходимо для устранения неопределенности из N равнозначных вариантов. Эта формула носит название формулы Хартли. Получена она в 1928 г. американским инженером Р. Хартли. Процесс получения информации он формулировал примерно так: если в заданном множестве, содержащем N равнозначных элементов, выделен некоторый элемент x, о котором известно лишь, что он принадлежит этому множеству, то, чтобы найти x, необходимо получить количество информации, равное log2N.
     Если N равно целой степени двойки (2, 4, 8, 16 и т.д.), то вычисления легко произвести "в уме". В противном случае количество информации становится нецелой величиной, и для решения задачи придется воспользоваться таблицей логарифмов либо определять значение логарифма приблизительно (ближайшее целое число, большее ).
     При вычислении двоичных логарифмов чисел от 1 до 64 по формуле x=log2N поможет следующая таблица.

N x N x N x N x
1 0,00000 17 4,08746 33 5,04439 49 5,61471
2 1,00000 18 4,16993 34 5,08746 50 5,64386
3 1,58496 19 4,24793 35 5,12928 51 5,67243
4 2,00000 20 4,32193 36 5,16993 52 5,70044
5 2,32193 21 4,39232 37 5,20945 53 5,72792
6 2,58496 22 4,45943 38 5,24793 54 5,75489
7 2,80735 23 4,52356 39 5,28540 55 5,78136
8 3,00000 24 4,58496 40 5,32193 56 5,80735
9 3,16993 25 4,64386 41 5,35755 57 5,83289
10 3,32193 26 4,70044 42 5,39232 58 5,85798
11 3,45943 27 4,75489 43 5,42626 59 5,88264
12 3,58496 28 4,80735 44 5,45943 60 5,90689
13 3,70044 29 4,85798 45 5,49185 61 5,93074
14 3,80735 30 4,90689 46 5,52356 62 5,95420
15 3,90689 31 4,95420 47 5,55459 63 5,97728
16 4,00000 32 5,00000 48 5,58496 64 6,00000

При алфавитном подходе, если допустить, что все символы алфавита встречаются в тексте с одинаковой частотой (равновероятно), то количество информации, которое несет каждый символ (информационный вес одного символа), вычисляется по формуле: x=log2N, где N - мощность алфавита (полное количество символов, составляющих алфавит выбранного кодирования). В алфавите, который состоит из двух символов (двоичное кодирование), каждый символ несет 1 бит (21) информации; из четырех символов - каждый символ несет 2 бита информации(22); из восьми символов - 3 бита (23) и т.д. Один символ из алфавита мощностью 256 (28) несет в тексте 8 битов информации. Как мы уже выяснили, такое количество информации называется байт. Алфавит из 256 символов используется для представления текстов в компьютере. Один байт информации можно передать с помощью одного символа кодировки ASCII. Если весь текст состоит из K символов, то при алфавитном подходе размер содержащейся в нем информации I определяется по формуле: , где x - информационный вес одного символа в используемом алфавите.
     Например, книга содержит 100 страниц; на каждой странице - 35 строк, в каждой строке - 50 символов. Рассчитаем объем информации, содержащийся в книге.
     Страница содержит 35 x 50 = 1750 байт информации. Объем всей информации в книге (в разных единицах):
     1750 x 100 = 175000 байт.
     175000 / 1024 = 170,8984 Кбайт.
     170,8984 / 1024 = 0,166893 Мбайт.

2.3. Вероятностный подход к измерению информации

Формулу для вычисления количества информации, учитывающую неодинаковую вероятность событий, предложил К. Шеннон в 1948 году. Количественная зависимость между вероятностью события р и количеством информации в сообщении о нем x выражается формулой: x=log2 (1/p). Качественную связь между вероятностью события и количеством информации в сообщении об этом событии можно выразить следующим образом - чем меньше вероятность некоторого события, тем больше информации содержит сообщение об этом событии.
     Рассмотрим некоторую ситуацию. В коробке имеется 50 шаров. Из них 40 белых и 10 черных. Очевидно, вероятность того, что при вытаскивании "не глядя" попадется белый шар больше, чем вероятность попадания черного. Можно сделать заключение о вероятности события, которые интуитивно понятны. Проведем количественную оценку вероятности для каждой ситуации. Обозначим pч - вероятность попадания при вытаскивании черного шара, рб - вероятность попадания белого шара. Тогда: рч=10/50=0,2; рб40/50=0,8. Заметим, что вероятность попадания белого шара в 4 раза больше, чем черного. Делаем вывод: если N - это общее число возможных исходов какого-то процесса (вытаскивание шара), и из них интересующее нас событие (вытаскивание белого шара) может произойти K раз, то вероятность этого события равна K/N. Вероятность выражается в долях единицы. Вероятность достоверного события равна 1 (из 50 белых шаров вытащен белый шар). Вероятность невозможного события равна нулю (из 50 белых шаров вытащен черный шар).
      Количественная зависимость между вероятностью события р и количеством информации в сообщении о нем x выражается формулой: . В задаче о шарах количество информации в сообщении о попадании белого шара и черного шара получится: .
      Рассмотрим некоторый алфавит из m символов: и вероятность выбора из этого алфавита какой-то i-й буквы для описания (кодирования) некоторого состояния объекта. Каждый такой выбор уменьшит степень неопределенности в сведениях об объекте и, следовательно, увеличит количество информации о нем. Для определения среднего значения количества информации, приходящейся в данном случае на один символ алфавита, применяется формула . В случае равновероятных выборов p=1/m. Подставляя это значение в исходное равенство, мы получим

Рассмотрим следующий пример. Пусть при бросании несимметричной четырехгранной пирамидки вероятности выпадения граней будут следующими: p1=1/2, p2=1/4, p3=1/8, p4=1/8, тогда количество информации, получаемое после броска, можно рассчитать по формуле:

Для симметричной четырехгранной пирамидки количество информации будет: H=log24=2(бит).
     Заметим, что для симметричной пирамидки количество информации оказалось больше, чем для несимметричной пирамидки. Максимальное значение количества информации достигается для равновероятных событий.

Вопросы для самоконтроля

1. Какие подходы к измерению информации вам известны?
     2. Какова основная единица измерения информации?
     3. Сколько байт содержит 1 Кб информации?
     4. Приведите формулу подсчета количества информации при уменьшении неопределенности знания.
     5. Как подсчитать количество информации, передаваемое в символьном сообщении?

Разработка Института дистантного образования Российского университета дружбы народов, 2006