Назад Вперед
ИНФОРМАТИКА И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ
О Проекте Структура Курса

ТЕМА 6. АППАРАТНОЕ ОБЕСПЕЧЕНИЕ РАБОТЫ КОМПЬЮТЕРА

6.1. История развития компьютерной техники

Люди учились считать, используя собственные пальцы. Когда этого оказалось недостаточно, возникли простейшие счетные приспособления. Особое место среди них занял абак (Древняя Греция, Рим, Западная Европа до 18 века), получивший в древнем мире широкое распространение.
     Сделать абак совсем несложно, достаточно разлиновать столбцами дощечку или просто нарисовать столбцы на песке. Каждому из столбцов присваивалось значение разряда чисел: разряд единиц, десятков, сотен, тысяч. Числа обозначались набором камешков, ракушек, веточек, косточек и т.п., раскладываемых по различным столбцам - разрядам. Добавляя или убирая из соответствующих столбцов то или иное количество камешков, можно было производить сложение или вычитание и даже умножение и деление как многократное сложение и вычитание соответственно. Очень похожи на абак по принципу действия русские счеты. В них вместо столбцов - горизонтальные направляющие с косточками. На Руси счетами пользовались просто виртуозно. Они были незаменимым инструментом торговцев, приказчиков, чиновников. Из России этот простой и полезный прибор проник и в Европу. Вместе с тем, наряду с вычислительными приспособлениями, развивались и механизмы для автоматизации работы человека. В ткацком станке француза Жозеф Мари Жаккара (1752-1834), созданном в 1804-08 годах, был реализован процесс создания узора ткани с помощью отверстий в картонных картах, при этом изменение положения отверстий позволяло получать различные узоры.
     Первым механическим счетным устройством была счетная машина, построенная в 1642 году выдающимся французским ученым Блезом Паскалем (1623-62). Механический "компьютер" Паскаля мог складывать и вычитать. "Паскалина", так называли машину, состояла из набора вертикально установленных колес с нанесенными на них цифрами от 0 до 9. При полном обороте колеса оно сцеплялось с соседним колесом и поворачивало его на одно деление. Число колес определяло число разрядов - так, два колеса позволяли считать до 99, три - уже до 999, а пять колес делали машину "знающей" даже такие большие числа как 99999. Считать на "Паскалине" было очень просто.
     В 1673 году немецкий математик и философ Готфрид Вильгельм Лейбниц (1646-1716) создал механическое счетное устройство, которое не только складывало и вычитало, но и умножало и делило. Машина Лейбница была сложнее "Паскалины". Числовые колеса, теперь уже зубчатые, имели зубцы девяти различных длин, и вычисления производились за счет сцепления колес. Именно несколько видоизмененные колеса Лейбница стали основой массовых счетных приборов - арифмометров, которыми широко пользовались не только в ХIХ веке, но и сравнительно недавно наши дедушки и бабушки.
     Есть в истории вычислительной техники ученые, чьи имена, связанные с наиболее значительными открытиями в этой области, известны сегодня даже неспециалистам. Среди них английский математик Х1Х века Чарльз Бэббидж (1791-1871), которого часто называют "отцом современной вычислительной техники". В 1823 году Бэббидж начал работать над своей вычислительной машиной, состоявшей из двух частей: вычисляющей и печатающей. Машина предназначалась в помощь британскому морскому ведомству для составления различных мореходных таблиц. Первая, вычисляющая часть машины была почти закончена к 1833 году, а вторую, печатающую, удалось довести почти до половины, когда расходы превысили 17000 фунтов стерлингов (около 30000 долларов). Больше денег не было, и работы пришлось закрыть.
     Хотя машина Бэббиджа и не была закончена, ее создатель выдвинул идеи, которые и легли в основу устройства всех современных компьютеров.
     Бэббидж пришел к выводу - вычислительная машина должна иметь устройство для хранения чисел, предназначенных для вычислений, а также указаний (команд) машине о том, что с этими числами делать. Следующие одна за другой команды получили название "программы" работы компьютера, а устройство для хранения информации назвали "памятью" машины. Однако хранение чисел даже вместе с программой - только полдела. Главное - машина должна производить с этими числами указанные в программе операции. Бэббидж понял, что для этого в машине должен быть специальный вычислительный блок - процессор. Именно по такому принципу и устроены современные компьютеры.
     Научные идеи Бэббиджа увлекли дочь знаменитого английского поэта лорда Джорджа Байрона - графиню Аду Августу Лавлейс (Огаста Ада Кинг Лавлейс) (1815-1852) . В то время еще не было таких понятий, как программирование для ЭВМ, но тем не менее Аду Лавлейс по праву считают первым в мире программистом - так сейчас называют людей, способных "объяснить" на понятном машине языке ее задачи. Дело в том, что Бэббидж не оставил ни одного полного описания изобретенной им машины. Это сделал один из его учеников в статье на французском языке. Ада Лавлейс перевела ее на английский, добавив собственные программы, по которым машина могла бы проводить сложные математические расчеты. В результате первоначальный объем статьи вырос втрое, а Бэббидж получил возможность продемонстрировать мощь своей машины. Многими понятиями, введенными Адой Лавлейс в описаниях тех первых в мире программ, широко пользуются современные программисты. В честь первого в мире программиста назван один из самых современных и совершенных языков компьютерного программирования - АДА.
     Новинки техники ХХ века оказались неразрывно связанными с электричеством. Вскоре после появления электронных ламп, в 1918 году советский ученый М.А.Бонч-Бруевич (1888-1940) изобрел ламповый триггер - электронное устройство, способное запоминать электрические сигналы. По принципу действия триггер похож на качели с защелками, установленными в верхних точках качания. Достигнут качели одной верхней точки - сработает защелка, качание остановится, и в этом устойчивом состоянии они могут быть как угодно долго. Откроется защелка - качание возобновится до другой верхней точки, здесь также сработает защелка, снова остановка, и так - сколько угодно раз. По тому, где окажутся качели через некоторое время после их установки в известном положении, можно судить, открывали защелку или нет. Качели как бы запоминают открывание защелки - также и электронный триггер запоминает, поступал на него электрический сигнал или нет.
     Один триггер, запоминая один сигнал, позволяет считать только до одного, но уже несколько триггеров расширяют вычислительные возможности. Если теперь придумать способ регистрации с помощью группы триггеров не только единичных сигналов, но и их десятков, сотен, тысяч - появляется возможность применить этот способ в электронно-вычислительной машине.
     В период с 1937 по 1942 г. г. американцы Джон Винсент Атанасофф (1903 - 15 июня 1995) (болгарин по происхождению) и Клиффорд Берри создали первую электронно-вычислительную машину, названную в честь авторов машиной Атанасоффа-Берри (ABC). Аппарат работал с двоичными числами, мог осуществлять логические операции, имел электронную память, а ввод-вывод осуществлялся посредством перфокарт.
     5 июля 1943 года ученые Пенсильванского университета в США подписывают контракт, по которому они создают электронный компьютер, известный под названием ЭНИАК. Ничего не значащее на русском языке название произошло от сокращения довольно длинного английского наименования - "электронный цифровой компьютер" (ENIAC, Electronic Numerical Integrator and Computor). 15 февраля 1946 года ЭНИАК официально ввели в строй.
     История создания первой ЭВМ имеет и некоторую скандальную предысторию. Патент на изобретение получили создатели ЭНИАК. И лишь в 1973 году по решению суда патент на ЭНИАК был признан недействительным, так как было доказано, что практически все основные узлы в машине ЭНИАК заимствованы из АВС.
     В 1946 году в научной статье трех американских авторов - Д. Неймана, Г. Голдстайна и А. Бернса - были изложены основные принципы построения универсальных ЭВМ, использующих одну и ту же память и для хранения обрабатываемых данных, и для хранения программы вычислений. Первая машина, реализующая эти принципы - ЭВМ EDSAC - была построена в Англии под руководством М. Уилкса в 1949 году, в Кембриджском университете. Через год была построена универсальная ЭВМ EDVAC в США.
     Основоположником отечественной вычислительной техники стал Сергей Алексеевич Лебедев (1902-1974). В 1921 году, сдав экзамены экстерном по программе средней школы, Лебедев поступил в МВТУ на электротехнический факультет. Многие годы посвятил энергетике, занимаясь проблемой устойчивости энергетических систем. В конце 1940-х годов переключился на новое направление. Под его руководством в Институте электротехники АН УССР была создана первая в стране лаборатория по разработке ЭВМ. Здесь была построена первая советская ЭВМ - МЭСМ, или Малая электронная счетная машина. С 1951 работал в Москве, где возглавлял лабораторию в Институте точной механики и вычислительной техники (ИМТ и ВТ), а с 1953 года и до конца жизни был директором этого института. Под руководством С. А. Лебедева с начала 1960-х годов в институте было создано несколько поколений больших счетных машин - БЭСМ, в которых применялись оригинальные разработки.
     БЭСМ-1 была для своего времени самой быстродействующей машиной в Европе (8-10 тысяч операций в секунду). БЭСМ-1 и последовавшие за ней БЭСМ-2 и М-20 были основаны на серийных отечественных электронных лампах. Затем были созданы их полупроводниковые варианты БЭСМ-3М, БЭСМ-4, М-220 и М-222. Модель БЭСМ-6 была спроектирована с использованием предварительного имитационного моделирования работы ее операционной системы, что позволило найти множество оригинальных технических решений. В разработке архитектуры БЭСМ-6 активное участие принимали программисты из созданной по инициативе Лебедева лаборатории математического обеспечения. Долгое время БЭСМ-6 считалась одной из лучших ЭВМ в мире. Лебедев разработал также основы создания многопроцессорных комплексов, вычислительных сетей, структурно-программных операционных систем, алгоритмических языков программирования и т. д. Большое внимание он уделял подготовке молодых специалистов. С 1953 возглавлял кафедру "Электронные вычислительные машины" в Московском физико-техническом институте.
     Сейчас насчитывают уже несколько поколений ЭВМ. К одному поколению относят все типы и модели машин, сконструированные на одних научно-технических принципах. Смена поколения происходит с появлением новых элементов, изготовленных по принципиально иным технологиям.
     Первое поколение (1946 - конец 50-х годов) компьютеров считали в тысячи раз быстрее механических счетных машин, но были очень громоздкими. ЭВМ занимала помещение размером 9х15 м, весила около 30 тонн и потребляла 150 киловатт в час. В такой ЭВМ было около 18 тысяч электронных ламп. Элементная база: электронно-вакуумные лампы, резисторы и конденсаторы. Габариты: громадные шкафы, которые занимали целые машинные залы. Скорость работы: 10 - 20 тыс. операций в секунду. Эксплуатация: очень сложная, частая замена ламп, перегрев машины. Программирование: в машинных кодах. Работали непосредственно за пультом машины специалисты высокой квалификации.
     Второе поколение (конец 50-х - конец 60-х годов) электронных компьютеров обязано своим появлением важнейшему изобретению электроники ХХ века - транзистору. Миниатюрный полупроводниковый прибор позволил резко уменьшить габариты компьютеров и снизить потребляемую мощность. Скорость компьютеров возросла до миллиона операций в секунду. Элементная база: полупроводниковые элементы - транзисторы, диоды, более совершенные резисторы и конденсаторы. Появились печатные платы для монтажа элементов. Габариты: стойки чуть выше роста человека. Устанавливались в специальных залах. Производительность: до 1 млн. операций в секунду. Введен принцип разделения времени для совмещения во времени работы разных устройств. Появились процессоры для управления вводом-выводом и для работы с действительными числами. Эксплуатация: стала проще. Появился штат обслуживающего персонала в машинных залах. Программирование: появились алгоритмические языки. Программы вводились не вручную с пульта самим программистом, а с помощью перфокарт или перфолент операторами ЭВМ. Задачи решались в пакетном режиме: друг за другом по мере освобождения устройств обработки.
     Третье поколение (конец 60-х - конец 70-х годов) связано с созданием интегральных схем. В сотни раз сократить число электронных элементов в компьютере позволило изобретение в 1950 году интегральных микросхем - полупроводниковых кристаллов, содержащих большое количество соединенных между собой транзисторов и других элементов. ЭВМ третьего поколения на интегральных микросхемах появились в 1964 году. Первой ЭВМ третьего поколения была IBM-360 фирмы IBM. Отечественные ЭВМ разделились на два семейства: большие (ЕС ЭВМ) и малые (СМ ЭВМ - класс мини-ЭВМ). Элементная база: интегральные схемы, которые вставляются в специальные гнезда на печатной плате. Габариты: ЕС ЭВМ схожи с ЭВМ второго поколения. СМ ЭВМ - две стойки и дисплей, которые не нуждались в специальном помещении. Скорость: до нескольких миллионов операций в секунду. Для эксплуатации требуется большой штат сотрудников: операторов, электронщиков. Большую роль играет системный программист. В структуре ЭВМ появился принцип модульности и магистральности - прообраз современной системной шины. Увеличился объем памяти, память разделилась на ОЗУ и ПЗУ, появились магнитные диски, ленты, дисплеи и графопостроители. Программирование: примерно так же, как и на предыдущем этапе. Наряду с пакетной обработкой появился режим работы с разделением времени. Разработаны операционные системы. Мини-ЭВМ уже работали в режиме реального времени.
     Четвертое поколение (конец 70-х и по настоящее время) связано с разработкой больших интегральных схем. В июне 1971 года была впервые разработана очень сложная универсальная интегральная микросхема, названная микропроцессором - важнейшим элементом компьютеров четвертого поколения. Элементная база: большие и сверхбольшие интегральные схемы (БИС и СБИС), содержащие сотни тысяч элементов на одном кристалле. Появилась технология создания микропроцессоров на базе БИС. Первый микропроцессор был создан фирмой Intel в 1971 году. Появились многопроцессорные суперЭВМ и микропроцессорные персональные ЭВМ. Термин "ЭВМ" заменился словом "компьютер". Габариты: персональный компьютер, занимающий часть письменного стола. Скорость: до миллиарда операций в секунду. Основная направленность в развитии аппаратной и программной части компьютерных технологий - обеспечение удобной работы пользователя. Сюда включается дружественный интерфейс, компактность оборудования, возможность подключения дополнительных устройств, совместимость и доступность программного обеспечения. Программирование: новые языки и среды программирования, новые принципы программирования. Развитие операционных систем, а также широкого класса программ прикладного характера.

6.2. Классификация компьютеров. Компьютерные платформы

По производительности и характеру использования компьютеры делят на следующие классы:

  • Большие: серверы и суперкомпьютеры;
  • Малые: персональные, производственные и портативные.

Разделение компьютеров на большие и малые началось в 70-х годах прошлого столетия. Возникла потребность в мощных быстродействующих компьютерах для решения глобальных задач. В то же время для решения многих задач не требовались мощности больших ЭВМ. Напротив, требовались специализированные устройства для управления технологическими процессами в автоматизированных системах, для проведения исследований и испытаний, бортовые ЭВМ и пр.
     Большие компьютеры ориентированы на одновременное обслуживание нескольких пользователей. Они дороги, занимают большую площадь, надежны, обладают огромными техническими возможностями быстродействия и памяти. Требуют присутствия системного программиста. Сервер - мощный компьютер, используемый в вычислительных сетях. На нем хранятся большие объемы информации, которой пользуются подключенные к серверу компьютеры. Сервер должен обладать большим быстродействием и надежностью работы. Класс серверов довольно разнообразен: от небольших компьютеров, близких к персональным, до суперкомпьютеров. Сервер может быть предназначен для определенных целей, например, файл-сервер - для работы с огромными массивами информации, или почтовый сервер - для организации электронной почты, и т.д. Большой сервер (суперсервер) может выполнять одновременно и несколько функций.
     Идея создания первых суперкомпьютеров (модель Cray фирмы Cray Research, 70-е годы 20-го века) заключалась в организации работы на нескольких процессорах для параллельного решения подзадач одной задачи. Суперкомпьютеры необходимы для работы с приложениями, требующими производительности как минимум в сотни миллиардов операций с плавающей точкой в секунду. Они используются в решении сложных научных задач (метеорология, гидродинамика и т. п.), в управлении, разведке, в качестве централизованных хранилищ информации и т.д. Суперкомпьютеры фирмы Silicon Graphics используются для создания спецэффектов в кинофильмах. Стоимость суперкомпьютеров очень высока: от пятнадцати миллионов долларов, поэтому решение об их покупке нередко принимается на государственном уровне. Так как идея мультипроцессорной обработки успешно реализуется в компьютерах других классов, более дешевых, во многом не уступающих ранним моделям суперкомпьютеров, постепенно складывается тенденция к понижению потребности в суперкомпьютерах и определении их в роли суперсерверов.
     Для малых компьютеров не так важны технические характеристики, как возможность удобного простого взаимодействия с пользователем. Создание персонального компьютера - весьма значительное изобретение века, поскольку он изменил значение и роль компьютера в жизни человека. Слово "персональный" означает не принадлежность компьютера отдельной персоне, а возможность для человека самостоятельно, без посредника-профессионала общаться с ЭВМ.
     Персональные компьютеры компактны, относительно дешевы, становятся все более доступным предметом обихода. Они не требуют специальных знаний компьютерной техники, обладают огромным набором программных средств для различных областей применения, используются повсеместно, поскольку берут на себя самую рутинную часть работы.
     Портативные компьютеры можно взять с собой в дорогу, всегда иметь при себе. Именно для этого они и предназначены (porto - ношу). Существуют разные типы этих компьютеров, например, ноутбук - блокнотный тип, или органайзер - электронная записная книжка. И внутри одного типа они отличаются набором и видом периферийных устройств в зависимости от конкретного назначения.
     Промышленные компьютеры отличаются повышенными требованиями к надежности работы, поскольку их используют в производственных условиях. Они управляют станками, самолетами, кораблями. С их помощью проводят испытания новых приборов, они встраиваются непосредственно в производственный цикл. Их изготавливают по особым технологиям.
     Конец 70-х и начало 80-х годов - это время начала выпуска самых разных компьютеров. Но часто модели были совершенно несовместимы, и для каждого компьютера надо было создавать свою версию программного обеспечения. В это время и появляется маленький персональный компьютер IBM PC американской фирмы IBM на основе процессора 8088 фирмы Intel. К тому времени фирма IBM уже имела прочную репутацию солидной электронной компании, выпускающей большие компьютеры для науки, управления производством и бизнесом. Поэтому персональный компьютер IBM PC поддержали фирмы-изготовители программного обеспечения. С этого момента разрабатывается универсальное программное обеспечение для персональных компьютеров. IBM PC был только первым шагом на пути развития персональных компьютеров. Впереди было появление моделей компьютеров IBM на различных процессорах фирмы Intel (80286, 80386, 80486, Pentium).
     Термин "персональный компьютер" вполне применим и к компьютерам других фирм. Но это не просто разные компьютеры. Они имеют принципиально разные процессоры, архитектуру, операционные системы и прикладные программы. В этом случае говорят не просто о разных компьютерах, а о разных платформах компьютеров. Компьютеры разных платформ между собой, как правило, несовместимы и вынуждены использовать разное программное обеспечение. Большая доля компьютеров, используемых сегодня во всем мире, - это персональные компьютеры IBM PC и клоны типа IBM PC (клонами называются персональные компьютеры, полностью совместимые с IBM PC, но выпускаемые другими фирмами). Но у IBM есть серьезный конкурент - фирма Apple, которая начала выпуск первых моделей своих компьютеров задолго до первых персональных компьютеров IBM PC. Компьютеры семейства Macintosh (сокращенно Маc) на различных процессорах фирмы Motorola идеально подходят для издательских, графических, мультимедийных применений. Macintosh сочетает в себе, казалось бы, несовместимое: надёжность и высокую эффективность, с одной стороны, и подкупающую простоту в общении - с другой. Компьютеры, на которых красуется логотип, изображающий надкусанное яблоко, можно часто увидеть в домах и учебных организациях Америки. Фирма Apple производит не только компьютеры, но и операционную систему для них, которая ведёт себя так дружественно, что порой её присутствие даже незаметно. Программы настраиваются легко, независимо от квалификации пользователя. Новые версии программ и драйверов меняются нечасто, и поэтому на рынок попадает продуманный до мелочей продукт.
     Считается, что компьютеры Macintosh не могут решать столь широкий круг задач, как РС-компьютеры. Это заблуждение. Даже производители компьютерных игр не оставляют Macintosh без работы: практически все игрушки можно найти и для этих машин. Конечно, Macintosh несовместим с PC, но если запустить специальную программу-эмулятор PC, то станут доступны все приложения и игры, написанные для PC. В последнее время к Macintosh можно подключать многие устройства, созданные изначально для PC.

6.3. Функциональное устройство компьютера

Потребность в автоматизации вычислений привела к созданию вначале простейших механических устройств, выполняющих арифметические действия, которые с развитием техники и появлением новых знаний совершенствовались и усложнялись.
     С технической точки зрения любой компьютер представляет собой систему устройств и блоков разного принципа действия: механических, электронных, магнитных, оптических и пр. Каждый элемент этой системы выполняет свою операцию по вводу, преобразованию, обработке, хранению и выводу информации. Совокупность всех технических средств, составляющих компьютер, называют аппаратным обеспечением (англ. hardware - аппаратные средства).

Само по себе аппаратное обеспечение ещё не является компьютером. Чтобы "железо" ожило и стало выполнять назначенные действия, необходимо программное обеспечение - совокупность программ, которые подсказывают компьютеру, что и в какой последовательности делать (англ. software - программные средства). Благодаря разнообразному программному обеспечению компьютер стал универсальным инструментом, применяемым в различных областях человеческой деятельности.
     Разумеется, нельзя утверждать, что только от программ зависят возможности компьютера. Если в программе записана команда "звук", а компьютер не имеет звуковоспроизводящей аппаратуры, то звука никто не услышит. И аппаратура, и программы необходимы для полноценного функционирования компьютера. Можно сказать, что аппаратное обеспечение - это тело, а программное - это душа компьютера.
     Компьютер - это универсальная электронная машина, которая состоит из согласованно работающих аппаратных и программных средств для автоматической обработки информации.
     В соответствии с принципами фон-неймановской архитектуры компьютер должен иметь устройства для обработки информации (арифметической и логической), хранения, ввода и вывода, а также устройство для управления всей работой компьютера. Каким же образом в персональном компьютере реализуется этот принцип? Устройством, обрабатывающим информацию, является центральный процессор (ЦП). Он также обеспечивает согласование действий всей аппаратуры, входящей в состав компьютера. Располагается процессор в системном блоке. Там же расположены запоминающие устройства (память), предназначенные для хранения информации. Устройства ввода и вывода информации расположены вне системного блока. Они играют посредническую роль, обеспечивая взаимодействие человека и компьютера. Для ПК неотъемлемыми устройствами ввода являются клавиатура и мышь, за вывод отвечает монитор, отображающий на своем экране выводимую информацию.
     Компьютер работает под управлением программы. Программа представляет собой последовательность команд, которые "понимает" процессор. Процессор считывает очередную команду, анализирует и выполняет. Считывание входных данных с устройств ввода и отправка результатов их обработки на устройства вывода выполняются под управлением процессора.
     Для хранения выполняемой команды и обрабатываемых данных в процессоре имеются специальные ячейки, так называемые регистры. Но в нём не предусмотрено место для хранения всей программы. Для этой важной цели служит внутренняя (основная) память компьютера. Наиболее существенную часть этой памяти составляет оперативное запоминающее устройство (ОЗУ). Именно в нем хранится выполняемая программа и данные, с которыми она работает. Но информация в ОЗУ хранится лишь до отключения компьютера от электропитания. Для долговременного хранения информации предназначена другая - внешняя память, в которой информация при выключении компьютера не стирается. Из внешней памяти выбирается и загружается в ОЗУ для выполнения программа, указанная пользователем. Носителями внешней памяти компьютера являются, например, магнитные и оптические диски.
     Все дополнительное оборудование, предназначенное для ввода, вывода, передачи, долговременного хранения информации, называют периферийными устройствами. Набор периферийных устройств современного ПК широк и разнообразен.

6.4. Архитектура компьютера

Под архитектурой компьютера понимается его принципы работы, логическая организация, структура, ресурсы, т. е. средства вычислительной системы, которые могут быть выделены процессу обработки данных на определенный интервал времени. Архитектура современных ПК основана на магистрально-модульном принципе.
     Модульный принцип позволяет потребителю самому подобрать нужную ему конфигурацию компьютера и производить при необходимости его модернизацию. Модульная организация системы опирается на магистральный (шинный) принцип обмена информации. Магистраль или системная шина - это набор электронных линий, связывающих воедино по адресации памяти, передачи данных и служебных сигналов процессор, память и периферийные устройства.
     Обмен информацией между отдельными устройствами ЭВМ производится по трем многоразрядным шинам, соединяющим все модули: шине данных, шине адресов и шине управления.
     Подключение отдельных модулей компьютера к магистрали на физическом уровне осуществляется с помощью контроллеров, а на программном обеспечивается драйверами. Контроллер принимает сигнал от процессора и дешифрует его, чтобы соответствующее устройство смогло принять этот сигнал и отреагировать на него. За реакцию устройства процессор не отвечает - что функция контроллера. Поэтому внешние устройства ЭВМ заменяемы, и набор таких модулей произволен.

Разрядность шины данных задается разрядностью процессора, т. е. количеством двоичных разрядов, которые процессор обрабатывает за один такт.
     Данные по шине данных могут передаваться как от процессора к какому-либо устройству, так и в обратную сторону, т.е. шина данных является двунаправленной. К основным режимам работы процессора с использованием шины передачи данных можно отнести следующие: запись/чтение данных из оперативной памяти и из внешних запоминающих устройств, чтение данных с устройств ввода, пересылка данных на устройства вывода.
     Выбор абонента по обмену данными производит процессор, который формирует код адреса данного устройства, а для ОЗУ - код адреса ячейки памяти. Код адреса передается по адресной шине, причем сигналы передаются в одном направлении, от процессора к устройствам, т.е. эта шина является однонаправленной.
     По шине управления передаются сигналы, определяющие характер обмена информацией, и сигналы, синхронизирующие взаимодействие устройств, участвующих в обмене информацией.
     Внешние устройства к шинам подключаются посредством интерфейса. Под интерфейсом понимают совокупность различных характеристик какого-либо периферийного устройства ПК, определяющих организацию обмена информацией между ним и центральным процессором. В случае несовместимости интерфейсов (например, интерфейс системной шины и интерфейс винчестера) используют контроллеры.
     Чтобы устройства, входящие в состав компьютера, могли взаимодействовать с центральным процессором, в IBM-совместимых компьютерах предусмотрена система прерываний (Interrupts). Система прерываний позволяет компьютеру приостановить текущее действие и переключиться на другие в ответ на поступивший запрос, например, на нажатие клавиши на клавиатуре. Ведь с одной стороны, желательно, чтобы компьютер был занят возложенной на него работой, а с другой - необходима его мгновенная реакция на любой требующий внимания запрос. Прерывания обеспечивают немедленную реакцию системы.
     Архитектура компьютера строится согласно принципам фон Неймана.
     1. Компьютер состоит из процессора, памяти и внешних устройств.
     2. Единственным источником активности (не считая стартового и аварийного вмешательства человека-оператора) в ЭВМ является процессор, который в свою очередь управляется программой, находящейся в памяти компьютера.
     3. Память состоит из ячеек, имеющих каждая свой адрес. Каждая ячейка хранит команду программы или некоторую единицу обрабатываемой информации, причем и команда и информация выглядят одинаково (машинное слово).
     4. В любой момент процессор выполняет одну команду программы, адрес которой находится в специальном регистре процессора - счетчике команд.
     5. Обработка информации происходит только в регистрах процессора. Информацию в процессор можно ввести из любой ячейки памяти или внешнего устройства и, наоборот, можно направить из процессора в любую ячейку или на внешнее устройство.
     6. В каждой команде программы зашифрованы следующие предписания:
     а) из каких ячеек памяти взять обрабатываемую информацию;
     б) какие совершить операции с взятой информацией;
     в) в какие ячейки памяти направить полученную информацию;
     г) как изменить содержимое счетчика команд, чтобы знать, откуда взять для выполнения следующую команду.
     7. Процессор исполняет программу команда за командой в соответствии с изменением содержимого счетчика команд в памяти, пока не получит команду остановиться.
     В настоящее время активно используется принцип открытой архитектуры компьютера, который был заложен при разработке ПЭВМ IBM PC. В IBM PC была заложена возможность усовершенствования отдельных частей компьютера и использования новых устройств. Фирма IBM обеспечила возможность сборки компьютера из независимо изготовленных частей. Этот принцип, при котором методы сопряжения различных устройств с IBM PC был стандартизован, известен и доступен всем желающим, был назван принципом открытой архитектуры.
     Реализация этого принципа такова. На основной электронной плате компьютера (системной, или материнской) размещены только те блоки, которые осуществляют обработку информации. Схемы, управляющие всеми другими устройствами компьютера - монитором, дисками и т.д., реализованы на отдельных платах, которые вставляются в стандартные разъемы на системной плате.
     При таком подходе фирмы IBM к разработке компьютеров другие фирмы получили возможность разрабатывать различные дополнительные устройства, а пользователи - самостоятельно модернизировать и расширять возможности компьютеров по своему усмотрению. Сейчас многие фирмы производят IBM-совместимые компьютеры и комплектующие к ним.

6.5. Состав компьютера

Обычно персональный компьютер состоит из трех частей: системный блок, клавиатура (для организации ввода информации в компьютер), монитор (для отображения текстовой и графической информации).
     В системном блоке располагаются электронные схемы (микропроцессор, ОП, контроллеры устройств), блок питания (преобразует напряжение сети в постоянный ток низкого напряжения, подаваемый на электрические схемы), НГМД (дисководы), НЖМД (винчестер). К системному блоку можно подключать дополнительные устройства ввода-вывода через специальные гнезда (разъемы) на задней стенке компьютера: принтер, мышь, сканер, графопостроитель, модем, факс- модем, звуковые колонки и т.д.
     Микропроцессор производит все вычисления и обработку информацию. Контроллеры и шина осуществляют обмен информацией между ОП и внешними устройствами (ВУ). Для каждого ВУ в компьютере имеется электронная схема, которая им управляет. Эта схема называется контроллером, или адаптером. Все контроллеры взаимодействуют с МП и ОП через системную магистраль по передаче данных, называемую шиной.
     Блока питания со встроенным вентилятором для охлаждения устройств внутри системного блока. Его легко определить по заметным размерам. В зависимости от типа компьютера мощность блока питания бывает разной. Энергия расходуется компьютером постоянно и порой совершенно бесполезно, когда компьютер включен, но не используется. Поэтому и появились экономичные модели настольных компьютеров. Проработав некоторое время вхолостую, они впадают "в спячку" - выключается монитор, отключаются и "засыпают" другие энергоемкие устройства. Потребление электроэнергии при этом снижается в несколько раз. Но стоит вам коснуться клавиатуры или мышки, компьютер оживет. Такие компьютеры называют "экономически чистыми", или green - "зелеными".
     Микросхемы центрального процессора и оперативной памяти расположены на самой большой электронной плате, которую называют системной или материнской платой (motherboard). Современный центральный процессор представляет собой сверхбольшую интегральную схему (СБИС), размещенную на кремниевом кристалле и выполненную в виде микросхемы или чипа (англ. chip - чип), Называется он микропроцессором. А термин "сверхбольшая" относится не к размерам микросхемы, а к количеству заключенных в ней электронных элементов (до нескольких миллионов). В компьютерную систему могут входить и другие процессоры, отвечающие за обработку информации на своих участках, например, математический сопроцессор, ускоряющий некоторые виды математических операций.
     Внутренняя память состоит из трех частей: оперативной (ОЗУ), постоянной (ПЗУ) и кэш-памяти. В отличие от оперативной и кэш-памяти, которые хранят данные, пока есть электропитание, ПЗУ является энергонезависимой и используется для хранения неизменяемой информации. В ней записаны программы, с помощью которых происходит тестирование устройств и загрузка операционной системы. Большая часть этих программ связана с обслуживанием процессов ввода-вывода, и содержимое ПЗУ часто называют BIOS (Basic Input/Output System, или базовая система ввода/вывода). Объем ПЗУ значительно меньше, чем ОЗУ, не превышает несколько сотен Кбайт. Раньше содержимое ПЗУ раз и навсегда формировалось на заводе, теперь современные технологии позволяют обновлять его, даже не извлекая из компьютерной платы.
     Микросхемы оперативной памяти монтируются на маленькой плате, снабженной контактами, с помощью которых она вставляется в специальный разъем (слот) на материнской плате. Для расширения возможностей компьютера материнская плата снабжается несколькими такими разъёмами. Кэш-память служит для ускорения работы компьютера (подробнее о ней будет сказано чуть позже). Существует два вида кэш-памяти: внутренняя, размещаемая внутри процессора, и внешняя, устанавливаемая на системной плате.
     Для согласованной работы устройств вывода (монитора, звуковых колонок и других) необходимы средства сопряжения этих устройств с компьютером: контроллеры (адаптеры), управляющие работой устройства, специальные слоты на материнской плате для установки контроллера и кабели для соединения устройства с контроллером. Все эти средства сопряжения предназначены для стандартизации обмена информацией аппаратуры ПК и называются интерфейсом (по-английски inter - между, face - лицо). Различают аппаратный и программный интерфейс. Для подключения нового периферийного устройства к компьютеру необходимо иметь соответствующий контроллер и подходящую программу-драйвер.
     Скорее всего, один или два слота расширения на системной плате будут заняты постоянно - в них "воткнуты" видеоадаптер (от него идет кабель к монитору) и звуковая карта (провода от нее идут к колонкам и микрофону).
     Внешние по отношению к системному блоку устройства (клавиатура, мышь, принтер и другие) подключаются через порты - разъемы, расположенные на задней панели системного блока.
     Некоторые из устройств внешней памяти, хотя и размещаются внутри системного блока, оформлены в виде самостоятельных узлов. Широкие и плоские кабели идут от материнской платы к дисководу для 3,5-дюймовых дискет, к жесткому диску, к приводу лазерных компакт-дисков.

6.6. Память компьютера и ее основные характеристики

Основной принцип хранения информации можно сформулировать следующим образом: сохраненная информация всегда имеет форму "следа", оттиска на каком-нибудь носителе.
     Тип носителя роли не играет. Это может быть камень, дерево, бумага, магнитная лента или фотопленка. След в форме некоторого знака на камне, дереве и бумаге может быть нанесен непосредственно человеческой рукой, вооруженной резцом, кистью или карандашом. Он виден невооруженным взглядом и может быть легко прочитан.
     Использование в качестве носителей информации фотопленки, магнитной ленты и лазерного диска требует специальных устройств - преобразователей информации. Так, для записи информации на фотопленку требуется фотоаппарат, а для считывания информации - проектор. Магнитные запись и считывание информации осуществляются с помощью магнитофона.
     Характерной чертой всех этих типов носителей является необходимость наличия специальных технических устройств, как для записи, так и для считывания информации. Это означает возможность механизации и автоматизации процессов записи и чтения информации, делает их независимыми от присутствия человека.
     Сегодня совершенствование компьютера как универсального средства обработки информации привело к созданию целого ряда устройств, специально предназначенных для хранения информации в электронной форме.
     Такие современные материалы, как фотопленка и магнитная лента, способны удовлетворить большинству требований, но они не лишены недостатков. Общеизвестно, что со временем фотоснимки темнеют, прослушивание грампластинок сопровождается потрескиванием, а магнитные записи начинают "шуметь" после многократного проигрывания. Сегодня самый распространенный способ хранения информации - магнитная запись. Но и она может быть испорчена под воздействием температуры или магнита. Для хранения небольших порций информации используют гибкие магнитные диски (floppy disks), на смену которым приходят Zip дискеты. Для хранения больших объемов информации применяют жесткие диски (hard disks), иногда называемые винчестерами.
     Со временем объем информации, с которой работал человек и которую ему надо передать другому человеку, возрастал. Это привело к созданию нового типа носителя - лазерного диска.
     Лазерный диск - трехслойный диск, изготовленный из стекла или прочной пластмассы. В нем между двумя тонкими защитными слоями пластмассы (стекла) помещен тонкий слой металлической фольги из серебра или даже из золота. Запись информации на такой диск осуществляется лучом лазера. Но записать информацию на лазерный диск можно всего один раз.
     В последние годы найдены материалы, сочетающие в себе достоинства магнитного и оптического носителей и позволяющие перезаписывать информацию, хранящуюся на диске. Основными достоинствами магнитооптических дисков являются большая информационная емкость, компактность, мобильность, возможность перезаписи хранящейся информации.
     Носитель информации (данных) - физическое тело или среда записи, хранения и воспроизведения информации. Различают: по физической структуре (магнитные, полупроводниковые, диэлектрические), по типу используемого материала (бумажные, пластмассовые, металлические, комбинированные), по форме представления данных (печатные, рукописные, магнитные, перфорационные), по принципу считывания информации (механические, оптические, магнитные, электрические), конструктивному исполнению (карточные, ленточные, дисковые, барабанные съемные и несъемные), а так же от возможности осуществлять перезапись. Информация записывается на носитель посредством изменения физических, механических или химических свойств среды

Основные типы устройств хранения информации

1. Накопители на гибких магнитных дисках (НГМД) - FDD (Floppy Disk Drive)

Тип Фирма Емкость, Мб Макс. скорость передачи, Мб/с Время доступа, мс
Дискета DS/HD Sony 1,44 0,062 84
Zip Iomega 250 2,4 29
SuperDisk (LS-120) Imation 120 1,1 (ATAPI), 4 (SCSI) 70
UHC-3110 Mitsumi 130 3,7 18-28
HiFD Sony 200 (500) 3,6 -

2. Накопители на жестких магнитных дисках (НЖМД, Винчестер) - HDD (Hard Disk Drive)
     Тип интерфейса - EIDE; Ultra ATA/100; SCSI
     Форм-фактор - 3.5"
     Макс. емкость - 30 Гб на пластину
     Типовая емкость (май 2001 г.) - 20 Гб
     Макс. скорость вращения - 11500 об/мин
     Среднее время поиска - не более 9 мс; переход дорожка-дородка - не более 2 мс
     Наработка на отказ - более 500000 ч

3.Магнитооптические накопители (MO)

Параметры Maxoptic T6-5200 Fujitsu MCD3130SS
Фирма Maxoptic Fujitsu
Форм-фактор 5.25" 3.5"
Емкость, Гб 5.2 1.3
Скорость вращения, об/мин 2996 3214
Скорость передачи данных, мб/с до 6 до 6
Время поиска, мс 25 28
Ср. время наработки на отказ, час. 200000 120000

4. Накопители на оптических дисках (компак-диск - CD)
     4.1 CDROM (Compact Disk Read Only Memory) - только для чтения

Параметры Типовые значения
Диаметр диска, мм 133
Емкость, Мб 650 ; Sony - 1,3 Gb; TDK - 2 Gb
Технология: CLV - Costant Linear Velocity (постоянная линейная)

CAV - Costant Angular Velocity (постоянная угловая)

Partial CAV (в центре CAV, по краям - CLV)
Скорость вращения, об/мин до 12000
Скорость передачи данных, 150 кб/с*Х до 70Х (Philips) - до 10,5 Мб/с

4.2 CD-R (Compact Disk Recordable) - с однократной записью - 1993 г. (Philips)
     Диаметр - 133 мм
     Емкость - 650 Мб
     Технология - потеря окраски слоя цианина или фталоцианина при воздействии мощного лазера
     Срок хранения - более 50 лет

4.3 CD-RW (Compact Disk ReWritable) -для чтения и многократной записи- 1997 г. (HP, Mitsumi, Philips)
     Диаметр - 133 мм
     Емкость - 650 Мб, скорость запись/стирание/чтение - 20/10/40
     Технология - изменение коэфф. отражения смеси серебра, индия, сурьмы и теллура
     Количество циклов перезаписи - более 3000

4.4 DVD-ROM (Digital Versatile Disk Read Only Memory), DVD-R (DVD Recordable), DVD-RAM (DVD Rear Access Memory)

Первый накопитель - 1997 г. (HP, Mitsumi,Philips)
Диаметр - 133 мм
Емкость, Гб: 4,7 - односторонние однослойные (DVD-5)
  8,5 - односторонние двухслойные (DVD-9)
  9,4 - двухсторонние однослойные (DVD-10)
  17 - двухсторонние двухслойные (DVD-18)

5. Накопители на магнитных лентах
     Стримеры (Streamer) - специализированные цифровые кассетные магнитофоны (до 24 Гб)

6.7. Устройства ввода-вывода

Основным устройством ввода информации в ПК является клавиатура. При нажатии на любую клавишу срабатывает миниатюрный переключатель, сигнал от которого отслеживается специальным микропроцессором, посылающим соответствующие сообщения в компьютер, где они обрабатываются операционной системой. В настоящее время широко применяются клавиатуры, у которых более 101 клавиши.
     Клавиши на клавиатуре можно разделить на блоки. Большинство клавиш служит для ввода букв, цифр, различных символов и знаков препинания - основная группа символов. Двенадцать функциональных клавиш: от до , имеют специальное назначение, зависящее от конкретной программы.
     Дополнительная клавиатура расположена справа. Она предназначена как для ввода чисел, так и для дублирования клавиш управления курсором. Если нажата клавиша "Num Lock" (горит индикатор), то вводятся цифры. При повторном нажатии на эту клавишу индикатор гасится, и дополнительная клавиатура дублирует управляющие клавиши. Рассмотрим более подробно служебные клавиши.

Esc (Escape). Обычно служит для отмены какого-либо действия или для выхода из программы.
     Enter (иногда называется <Return>). Служит для завершения ввода строки и перехода на следующую строку, принятия положительного ответа на вопрос и т.д.
     Tab Предназначена для формирования отступов в тексте, переключения между различными альтернативами в диалогах.
     Shift Клавиша переключения регистра. Если нажать клавишу <Shift> и, не отпуская её, нажать клавишу с буквой, то введётся заглавная буква. Кроме того, некоторые клавиши (например, цифровые) имеют два символа. Простое нажатие клавиши вводит символ, указанный на клавише снизу. Нажатие с клавишей <Shift> вводит символ, указанный сверху. На клавиатуре, для удобства, имеется две клавиши <Shift>. Как правило, они идентичны, хотя в некоторых программах они могут иметь различные функции.
     Caps Lock Фиксированное переключение регистра в режим ввода прописных букв. Горит индикатор.
     Ctrl Управляющая клавиша расширяет возможности клавиатуры, используется в комбинации с другими клавишами. Какую именно клавишу необходимо нажать для той или иной команды - зависит от конкретной программы.
     Alt Альтернативная управляющая клавиша. Её назначение сходно с клавишей <Ctrl>, однако они не идентичны. Комбинации с клавишей <Alt> и с клавишей <Ctrl>, как правило, запускают разные команды.
     Backspace Стирает последний введённый символ или символ, стоящий слева от курсора.
     Insert (сокращение: <Ins>). Служит для переключения режимов вставки/замены символов при редактировании текста, для добавления нового элемента в список.
     Delete (сокращение: <Del>). Служит для удаления чего-либо, например, выделенного фрагмента текста, символа справа от курсора, элемента списка и т.д.
     Home Предназначена для перехода в начало (строки, списка и т.п.)
     End Предназначена для перехода в конец (строки, списка и т.п.)
     PageUp (сокращение: <PgUp>). Предназначена для перехода на предыдущую страницу или прокрутки изображения на экране вверх.
     PageDown (сокращение: <PgDn>). Предназначена для перемещения изображения на экране вниз.
     Клавиши Вверх, Вниз, Вправо, Влево При редактировании текста позволяют перемещать курсор в соответствующем направлении.
     Scroll Lock В далёком прошлом служила для включения/отключения режима прокрутки экрана, однако давно уже утратила своё первоначальное назначение. Сейчас её назначение зависит от конкретной программы, однако стоит заметить, что эта кнопка используется крайне редко.
     Print Screen (сокращение: <PrnScr>). Ранее использовалась для того, чтобы напечатать содержимое экрана на принтере. Иногда и в наши дни она используется таким или подобным образом.
     Pause/Break Имеет два назначения. Простое нажатие этой клавиши включает режим паузы. Нажатие вместе с клавишей <Ctrl> служит для того, чтобы прервать выполняемое действие.
     Специально для работы с Microsoft Windows 95/98/2000/NT4/ХР на клавиатуре появились две клавиши вызова системного меню с изображением логотипа Windows ( ) и клавиша вызова контекстного меню с изображением меню. Для полноценной работы с клавиатурой требуется определённый навык, на развитие которого потребуется время. Существуют специальные программы - клавиатурные тренажёры, позволяющие ускорить приобретение навыка.
     Для управления работой современных программ используются различные манипуляторы. Манипуляторы осуществляют непосредственный ввод информации, указывая курсором-указателем на экране монитора команду или место ввода данных.
     Мышь - наиболее распространенный вид манипулятора. Движение мыши отражается на экране монитора перемещением её указателя. Качество мыши определяется её разрешающей способностью, которая измеряется числом точек на дюйм - dpi (dot per inch). Эта характеристика определяет, насколько точно курсор будет передвигаться по экрану. Для мыши среднего класса разрешение составляет 400-800 dpi. Мыши различаются по свойствам: способ считывания информации (механические, оптические, оптико-механические), количество кнопок, способ соединения (проводные и беспроводные).
     Джойстик представляет собой ручку управления и наиболее часто используется в компьютерных играх. Джойстики управляют перемещениями курсора по экрану. Призваны усилить реалистичность во время игры-симулятора машины, самолёта, космического корабля и пр.
     Трекбол (шаровой манипулятор) - это шар, расположенный вместе с кнопками на поверхности клавиатуры (перевёрнутая мышь). Для него не требуется коврик и пространство для перемещения манипулятора. Перемещение указателя по экрану обеспечивается вращением шара. Применяется в портативных компьютерах.
     Сенсорные устройства ввода называют еще тактильными, поскольку ввод информации в них выполняется через прикосновение к светочувствительной поверхности устройства.
     Сенсорный манипулятор представляет собой коврик без мыши. В данном случае управление курсором производится простым движением пальца по коврику.
     Сенсорный экран представляет собой поверхность, которая покрыта специальным слоем. Это устройство даёт возможность выбирать действие или команду, дотрагиваясь до экрана пальцем. Очень удобен в использовании, когда необходим быстрый доступ к информации. Такими устройствами ввода пользуются в банковских компьютерах, аэропортах, а также в военной сфере и промышленности.
     Световое перо - имеет светочувствительный элемент на своем кончике. Соприкосновение пера с экраном замыкает электрическую цепь и определяет место ввода или коррекции данных. Перемещая перо по экрану можно рисовать или писать. Применяются такие устройства в дизайнерских работах. Часто используется в карманных микрокомпьютерах.
     Дигитайзер (графический планшет) - позволяет создавать или копировать рисунки. Рисунок выполняется на поверхности дигитайзера специальным пером или пальцем. Результаты работы воспроизводятся на экране монитора.
     В сканерах изображение преобразуется в цифровую форму для дальнейшей обработки компьютером или воспроизведения на экране монитора.
     Сканер распознает изображение, автоматически создает его электронную копию, которая может быть сохранена в памяти компьютера.
     Характеристики сканеров:

  • глубина распознавания цвета: чёрно-белые, с градацией серого, цветные;
  • оптическое разрешение, измеряющееся в точках на дюйм и определяющее количество точек, которые сканер различает на каждом дюйме; стандартные разрешения: 200, 300, 600, 1200, 2400 точек на дюйм;
  • скорость сканирования;
  • максимальный размер сканируемого документа.

Виды сканеров: ручные, страничные и планшетные. Существуют не только двумерные сканеры, но и трёхмерные, позволяющие формировать реалистичные объёмные изображения. Сканеры находят широкое применение в издательской деятельности, системах проектирования, анимации, а также при создании иллюстративных материалов для презентаций, докладов, рекламы. Трёхмерное сканирование позволяет моделировать возможности аэродинамической трубы, избегая дорогостоящих натурных испытаний. Специальные сканеры, оснащённые разнообразными устройствами считывания штрих-кодов, специальных символов и меток продаваемого товара, устанавливаются на кассах магазинов. Считанная информация преобразуется, выводится на экран или бумажный чек и по линиям связи передаётся на главный, более мощный компьютер.
     Цифровая видеокамера - устройство ввода, передающее динамическое видеоизображение в компьютер в реальном масштабе времени. Зачастую используется для видеоконференций по сети Интернет. Для подключения видеокамеры необходимо, чтобы графический адаптер компьютера имел соответствующий разъём.
     Микрофон - устройство ввода звуковой информации: голоса или музыки. Существуют системы распознавания речи, настроенные на особенности человеческого голоса, которые находят применение при изучении иностранных языков.
     Устройство визуального отображения информации называют монитором или дисплеем. Большинство мониторов сконструировано на базе электронно-лучевых трубок (ЭЛТ). Передняя часть ЭЛТ обращена к пользователю и покрыта специальным веществом - люминофором, состоящим из множества точек - зёрен. Люминофор излучает свет при попадании на него "быстрых" электронов. Пучок электронов, вызывающий свечение экрана, испускается электронной пушкой. На пути электронов расположена отклоняющая система, позволяющая изменять направление пучка, и модулятор, регулирующий яркость получаемого изображения.
     Изображение на экране монитора компьютера состоит из множества отдельных точек - пикселей. Электронный луч пробегает поочередно все пиксели, строку за строкой, сверху донизу, а затем возвращается в начало верхней строки.
     Цветное изображение получается при нанесении на поверхность экрана люминофора трёх цветов: красного (R - red), зелёного (G - green), синего (В - blue). Сочетание этих цветов в различных пропорциях может дать любой цвет спектра. Триада таких зёрен люминофора образует один пиксель. И теперь для того, чтобы подсвечивать три зерна пикселя, потребуется сразу три электронных пушки, и каждая из них должна излучать поток электронов в направлении своего зерна люминофора.
     Важными характеристиками, определяющими чёткость изображения на экране, являются размер пикселя и плотность расположения пикселей на экране. Чем меньше зерна люминофора экрана и больше плотность, тем выше чёткость изображения и меньше утомляемость глаз. Расстояние между пикселями зависит от размера экрана. Обычные размеры - 9, 14, 15, 17, 19, 21 дюйм по диагонали экрана. Чем меньше экран, тем более чётким кажется изображение. Однако на большом экране можно установить разрешение выше (добавить пикселей), тогда мелкие детали будут лучше видны.
     Кроме электронно-лучевых существуют и получают всё большее распространение другие виды мониторов:

  • жидкокристаллические (ЖК);
  • газоплазменные (ГП);
  • LEP-мониторы.

Экран ЖК-монитора представляет собой матрицу, каждый элемент которой - жидкий кристалл. Под действием электрических сигналов кристаллы меняют свои оптические свойства и, пропуская свет, моделируют элементы изображения. Компактные размеры, плоский экран, отсутствие излучений, вредных для здоровья человека, делают их всё более привлекательными. Именно такие мониторы используют в портативных компьютерах.
     Экран ГП-мониторов также содержит матрицу, но ячейки заполнены газовой смесью. Газ светится под воздействием электрического тока. Экран такого монитора очень тонкий и большой по площади. Используются в основном для показа изображения на расстоянии: в большой аудитории или в домашних кинотеатрах.
     В основе построения LEP-мониторов лежит использование светоизлучающих полимеров. Устройство очень простое: с одной стороны пластика расположены вертикальные электроды, с другой - горизонтальные. Пластик сам излучает свет и ему не нужна подсветка в отличие от жидких кристаллов. Это очень легкие, гибкие, с низким энергопотреблением устройства. Ожидается скорое развитие их массового производства.
     Современные принтеры позволяют выводить на печать текстовую информацию, а также рисунки и графики. Существует множество моделей принтеров, различающихся по качеству печати, производительности и другим характеристикам.
     Основными характеристиками принтеров являются:

  • количество игл или сопел (за исключением лазерных), определяющее качество печати;
  • скорость печати, определяющая производительность принтера;
  • количество встроенных шрифтов;
  • формат бумаги и вид подачи листов (автоматическая или полуавтоматическая).

По способу получения изображения на бумаге, способу нанесения красящего материала принтеры бывают: матричные, струйные, лазерные, термические, литерные.
     Матричные принтеры относятся к ударным печатающим устройствам. Изображение формируется с помощью иголок, ударяющих по бумаге через красящую ленту. Головка движется вдоль печатаемой строки, а иглы ударяют в нужный момент через красящую ленту по бумаге.
     Струйные принтеры относятся к безударным устройствам, так как головка печатающего устройства не касается бумаги. Для получения изображения используют чернила. Головка принтера представляет собой чернильницу, в которой из дырочек-сопел выбрасываются тонкие струи чернил. Количество сопел колеблется от 12 до 64. Чем меньше диаметр сопел, тем выше качество печати. В отличие от матричных струйные принтеры работают почти бесшумно и обеспечивают лучшее качество печати, особенно цветной.
     Лазерные принтеры для формирования изображения используют лазерный луч. С помощью систем линз тонкий луч лазера формирует скрытое электронное изображение на светочувствительном барабане. Во время печати на поверхность барабана подается высокое напряжение, и к заряженным участкам электронного изображения притягиваются частички порошка-красителя, который затем переносится на бумагу. Закрепляется изображение на бумаге разогревом тонера до температуры плавления. Лазерные принтеры обеспечивают наилучшее качество и высокую скорость печати, но являются наиболее дорогими. Кстати, также работают и копировальные машины. Поэтому далеко не случайно, что среди производителей лазерных принтеров много фирм, которые выпускают копиры: Xerox, Canon, Minolta-QMS и др.
     Современные принтеры имеют встроенный процессор. Это позволяет значительно разгрузить центральный процессор. Одним из важных параметров лазерного принтера является "скорострельность" печати. Некоторые принтеры могут печатать до 20 страниц в минуту. Изображение, получаемое с помощью современных принтеров, состоит из точек. Чем эти точки мельче и чаще расположены, тем более качественное изображение можно получить. Качество печати принтера принято измерять максимальным количеством точек, которое он может напечатать на отрезке длиной в 1 дюйм (2,54 см). Данная характеристика называется разрешением и измеряется в единицах, обозначаемых dpi (dot per inch, точек на дюйм). Лазерные принтеры имеют разрешение от 600 до 1200 dpi, а некоторые и выше.
     Плоттер, или графопостроитель, - это чертежная машина, позволяющая с высокой точностью и скоростью вычерчивать сложные графические изображения большого размера: чертежи, схемы, карты, графики и т.д.
     В начале 90-х годов прошлого века фирмы Hewlett-Packard и EnCad применили в конструкциях своих плоттеров струйные технологии. Это сделало их похожими на струйные принтеры. Струйные плоттеры по сравнению с перьевыми приобрели ряд преимуществ, среди которых возможность печатать полноцветные изображения и делать на чертежах и картах любые заливки. Это открыло перед плоттерами невиданные до того перспективы применения: печать рекламных плакатов, трёхмерных фотореалистичных изображений в архитектуре и в машиностроении, цветных космических снимков, макетов в издательских системах и т.д. Началась эпоха струйных плоттеров. В их конструкциях был внедрен целый ряд нововведений: системы непрерывной подачи чернил и рулонной подачи материалов, материалы со свойствами защиты от воды, система сушки и др. Но главный их принцип работы и в настоящее время остался похож на принцип работы струйных принтеров: изображение формируется из точек - капель чернил. Иными словами, сегодня по каким-либо техническим признакам, кроме ширины печати, отличить современный струйный принтер от плоттера практически невозможно.
     Модем - это устройство для обмена информацией между компьютерами с использованием телефонной сети. Модем работает следующим образом: принимая от ПК данные, он преобразует их в аналоговый сигнал и передаёт в канал связи. В модеме принимающего ПК происходит обратное преобразование - сигнал преобразуется в цифровой код.
     Свойства модема определяются большим числом специфических характеристик, отражённых в его маркировке. Основными характеристиками модемов являются: скорость передачи данных; способ подключения (внешнее и внутреннее); принцип обмена информацией (одно или двунаправленная передача).

6.8. Устройство обработки информации

В современных компьютерах весьма распространены микропроцессоры фирмы Intel, чаще известные по их товарной марке Pentium. Кстати, нередко можно услышать, как и компьютеры называют по используемому типу микропроцессора: Pentium, Seleron, AMD и др.
     Обработка любой информации в процессоре связана с выполнением базовых арифметических и логических операций. Эту работу в процессоре выполняет арифметико-логическое устройство (АЛУ). Устройство управления (УУ) - второй блок процессора, формирует управляющие сигналы и координирует работу всех устройств и выполнение всех процессов в компьютере.
     Характеристики микропроцессора - тактовая частота и разрядность.
     Тактовая частота характеризует быстродействие процессора, задает ритм работы компьютера и определяется в герцах - количество элементарных операций, выполняемых в секунду.
     Tакт - это промежуток времени между импульсами, которые периодически вырабатывает генератор тактовой частоты. На выполнение каждой операции компьютера отводится определенное число тактов. Операция разбивается на элементарные действия, каждое из которых выполняется за один такт. Чем чаще следуют импульсы от генератора, тем быстрее будет выполнена операция. Тактовая частота измеряется в единицах, производных от герца - кило-, мега- и гигагерцах (1КГц =1000Гц).
     Сравнение быстродействия компьютеров по тактовым частотам их процессоров уместно только в том случае, если оба процессора устроены примерно одинаково (изготовлены одним производителем). В противном случае можно получить абсолютно неправильные выводы. Кроме того, производительность современной компьютерной системы определяется не только быстродействием отдельно взятого процессора, но и скоростями работы остальных узлов компьютера и способами организации всей системы в целом. Так, чрезмерно быстрый процессор будет вынужден простаивать, ожидая медленно работающую память. Часто простое увеличение объема ОЗУ дает гораздо больший эффект, чем замена процессора более быстрым. Например, увеличение тактовой частоты в два раза увеличивает общую производительность системы на 15-20%, а увеличение вдвое объема ОЗУ ускоряет работу компьютера на 50%.
     Разрядность - максимальное количество битов, которые могут обрабатываться одновременно. Разрядность процессора - длина машинного слова - определяется разрядностью регистров процессора и разрядностью шины данных. Теоретически их величины могут не совпадать, но практически их делают одинаковыми.
     При разработке новых микропроцессоров их разработчики стремятся к постоянному усилению характеристик микропроцессоров. Для сравнения: прапрадедушка современных микропроцессоров (Intel, 1971 г.) был 4-разрядный, и его тактовая частота составляла 750 КГц, а современный процессор той же фирмы с разрядностью 64 имеет тактовую частоту до нескольких ГГц.

6.9. Искусственный интеллект и достижения современной компьютерной техники

Основные фундаментальные достижения в области исследования человеческой логики за более чем 2 тысячи лет (со времен Аристотеля) сегодня уже заложены в ЭВМ, а на базе проектов "открытых систем" продолжается построение гибких информационных технологий.
     Некоторые считают, что интеллект - умение решать сложные задачи; другие рассматривают его как способность к обучению, обобщению и аналогиям; третьи - как возможность взаимодействия с внешним миром путем общения, восприятия и осознания воспринятого. Тем не менее, многие исследователи ИИ склонны принять тест машинного интеллекта, предложенный в начале 50-х годов выдающимся английским математиком и специалистом по вычислительной технике Аланом Тьюрингом. Компьютер можно считать разумным, утверждал Тьюринг, если он способен заставить нас поверить, что мы имеем дело не с машиной, а с человеком.
     Идея создания мыслящих машин "человеческого типа", которые казалось бы думают, двигаются, слышат, говорят, и вообще ведут себя как живые люди уходит корнями в глубокое прошлое. Еще древние египтяне и римляне испытывали благоговейный ужас перед культовыми статуями, которые жестикулировали и изрекали пророчества (разумеется, не без помощи жрецов). Средневековые летописи полны рассказов об автоматах, способных ходить и двигаться почти также как их хозяева - люди. В средние века и даже позднее ходили слухи о том, что у кого-то из мудрецов есть гомункулы (маленькие искусственные человечки) - настоящие живые, способные чувствовать существа.
     В XVIII веке благодаря развитию техники, особенно разработке часовых механизмов, интерес к подобным изобретениям возрос. В 1736 году французский изобретатель Жак де Вокансон изготовил механического флейтиста в человеческий рост, который исполнял двенадцать мелодий, перебирая пальцами отверстия и дуя в мундштук, как настоящий музыкант. В середине 1750-х годов Фридрих фон Кнаус, австрийский автор, служивший при дворе Франциска I, сконструировал серию машин, которые умели держать перо и могли писать довольно длинные тексты. Другой мастер, Пьер Жак-Дроз из Швейцарии, построил пару изумительных по сложности механических кукол размером с ребенка: мальчика, пишущего письма и девушку, играющую на клавесине.
     Успехи механики XIX века стимулировали еще более честолюбивые замыслы. Так, в 1830-х годах английский математик Чарльз Бэббидж задумал, правда, так и не завершив, сложный цифровой калькулятор, который он назвал Аналитической машиной; как утверждал Бэббидж, его машина в принципе могла бы рассчитывать шахматные ходы. Позднее, в 1914 году, директор одного из испанских технических институтов Леонардо Торрес-и-Кеведо действительно изготовил электромеханическое устройство, способное разыгрывать простейшие шахматные эндшпили почти также хорошо, как и человек.
     Однако только после второй мировой войны появились устройства, казалось бы, подходящие для достижения заветной цели - моделирования разумного поведения; это были электронные цифровые вычислительные машины. "Электронный мозг", как тогда восторженно называли компьютер, поразил в 1952 г. телезрителей США, точно предсказав результаты президентских выборов за несколько часов до получения окончательных данных. Многие изобретатели компьютеров и первые программисты развлекались составляя программы для отнюдь не технических занятий, как сочинение музыки, решение головоломок и игры, на первом месте здесь оказались шашки и шахматы. Некоторые романтически настроенные программисты даже заставляли свои машины писать любовные письма.
     К концу 50-х годов все эти увлечения выделились в новую более или менее самостоятельную ветвь информатики, получившую название "искусственный интеллект". Исследования в области ИИ, первоначально сосредоточенные в нескольких университетских центрах США: в Массачусетском технологическом институте, Технологическом институте Карнеги в Питтсбурге, Станфордском университете. В настоящее время такие исследования ведутся во многих других университетах и корпорациях США и других стран. В общем, исследователей ИИ, работающих над созданием мыслящих машин, можно разделить на две группы. Одних интересует чистая наука и для них компьютер лишь инструмент, обеспечивающий возможность экспериментальной проверки теорий процессов мышления. Интересы другой группы лежат в области техники: они стремятся расширить сферу применения компьютеров и облегчить пользование ими. Многие представители второй группы мало заботятся о выяснении механизма мышления, так как они полагают, что для их работы это едва ли более полезно, чем изучение полета птиц и самолетостроения.
     В настоящее время, однако, обнаружилось, что как научные так и технические поиски столкнулись с несоизмеримо более серьезными трудностями, чем представлялось первым энтузиастам. На первых порах многие пионеры ИИ верили, что через какой-нибудь десяток лет машины обретут высочайшие человеческие таланты. Предполагалось, что преодолев период "электронного детства" и обучившись в библиотеках всего мира, хитроумные компьютеры, благодаря быстродействию точности и безотказной памяти постепенно превзойдут своих создателей-людей. Сейчас мало кто говорит об этом, а если и говорит, то отнюдь не считает, что подобные чудеса не за горами.
     На протяжении всей своей короткой истории исследователи в области ИИ всегда находились на переднем крае информатики. Многие ныне обычные разработки, в том числе усовершенствованные системы программирования, текстовые редакторы и программы распознавания образов, в значительной мере рассматриваются на работах по ИИ. Короче говоря, теории, новые идеи, и разработки ИИ неизменно привлекают внимание тех, кто стремится расширить области применения и возможности компьютеров, сделать их более "дружелюбными" то есть более похожими на разумных помощников и активных советчиков, чем те педантичные электронные роботы, какими они всегда были.
     Несмотря на многообещающие перспективы, ни одну из разработанных до сих пор программ ИИ нельзя назвать "разумной" в обычном понимании этого слова. Это объясняется тем, что все они узко специализированы; самые сложные экспертные системы по своим возможностям скорее напоминают дрессированных или механических кукол, нежели человека с его гибким умом и широким кругозором. Даже среди исследователей ИИ теперь многие сомневаются, что большинство подобных изделий принесет существенную пользу. Немало критиков ИИ считают, что такого рода ограничения вообще непреодолимы.
     К числу таких скептиков относится и Хьюберт Дрейфус, профессор философии Калифорнийского университета в Беркли. С его точки зрения, истинный разум невозможно отделить от его человеческой основы, заключенной в человеческом организме. "Цифровой компьютер - не человек, - говорит Дрейфус. - У компьютера нет ни тела, ни эмоций, ни потребностей. Он лишен социальной ориентации, которая приобретается жизнью в обществе, а именно она делает поведение разумным. Я не хочу сказать, что компьютеры не могут быть разумными. Но цифровые компьютеры, запрограммированные фактами и правилами из нашей, человеческой, жизни, действительно не могут стать разумными. Поэтому ИИ в том виде, как мы его представляем, невозможен".
     Попытки построить машины, способные к разумному поведению, в значительной мере вдохновлены идеями профессора МТИ Норберта Винера, одной из выдающихся личностей в интеллектуальной истории Америки. Помимо математики он обладал широкими познаниями в других областях, включая нейропсихологию, медицину, физику и электронику.
     Винер был убежден, что наиболее перспективны научные исследования в так называемых пограничных областях, которые нельзя конкретно отнести к той или иной конкретной дисциплины. Они лежат где-то на стыке наук, поэтому к ним обычно не подходят столь строго. "Если затруднения в решении какой-либо проблемы психологии имеют математический характер, пояснял он, - то десять несведущих в математике психологов продвинуться не дальше одного столь же несведущего".
     Винеру и его сотруднику Джулиану Бигелоу принадлежит разработка принципа "обратной связи", который был успешно применен при разработке нового оружия с радиолокационным наведением. Принцип обратной связи заключается в использовании информации, поступающей из окружающего мира, для изменения поведения машины. В основу разработанных Винером и Бигелоу систем наведения были положены тонкие математические методы; при малейшем изменении отраженных от самолета радиолокационных сигналов они соответственно изменяли наводку орудий, то есть - заметив попытку отклонения самолета от курса, они тотчас рассчитывали его дальнейший путь и направляли орудия так, чтобы траектории снарядов и самолетов пересеклись.
     В дальнейшем Винер разработал на принципе обратной связи теории как машинного, так и человеческого разума. Он доказывал, что именно благодаря обратной связи все живое приспосабливается к окружающей среде и добивается своих целей. "Все машины, претендующие на "разумность", - писал он, - должны обладать способность преследовать определенные цели и приспосабливаться, т.е. обучаться". Созданной им науке Винер дает название кибернетика, что в переводе с греческого означает рулевой.
     Следует отметить, что принцип "обратной связи", введенный Винером был в какой-то степени предугадан Сеченовым в явлении "центрального торможения" в "Рефлексах головного мозга" (1863 г.) и рассматривался как механизм регуляции деятельности нервной системы, и который лег в основу многих моделей произвольного поведения в отечественной психологии.
     К этому времени и другие ученые стали понимать, что создателям вычислительных машин есть чему поучиться у биологии. Среди них был нейрофизиолог и поэт-любитель Уоррен Маккалох, обладавший как и Винер философским складом ума и широким кругом интересов. В 1942 году Маккалох, участвуя в научной конференции в Нью-йорке, услышал доклад одного из сотрудников Винера о механизмах обратной связи в биологии. Высказанные в докладе идеи перекликались с собственными идеями Маккалоха относительно работы головного мозга. В течение следующего года Маккалох в соавторстве со своим 18-летним протеже, блестящим математиком Уолтером Питтсом, разработал теорию деятельности головного мозга. Эта теория и являлась той основой, на которой сформировалось широко распространенное мнение, что функции компьютера и мозга в значительной мере сходны.
     Исходя отчасти из предшествующих исследований нейронов (основных активных клеток, составляющих нервную систему животных), проведенных Маккаллохом, они с Питтсом выдвинули гипотезу, что нейроны можно упрощенно рассматривать как устройства, оперирующие двоичными числами.
     Двоичные числа, состоящие из единицы и нуля, - рабочий инструмент одной из систем математической логики. Английский математик XIX века Джордж Буль, предложивший эту остроумную систему, показал, что логические утверждения можно закодировать в виде единиц и нулей, где единица соответствует истинному высказыванию а нуль - ложному, после чего этим можно оперировать как обычными числами. В 30-е годы XX века пионеры информатики, в особенности американский ученый Клод Шеннон, поняли, что двоичные единица и нуль вполне соответствуют двум состояниям электрической цепи (включено-выключено), поэтому двоичная система идеально подходит для электронно-вычислительных устройств. Маккалох и Питтс предложили конструкцию сети из электронных "нейронов" и показали, что подобная сеть может выполнять практически любые вообразимые числовые или логические операции. Далее они предположили, что такая сеть в состоянии также обучаться, распознавать образы, обобщать, т.е. она обладает всеми чертами интеллекта.
     Теории Маккаллоха-Питтса в сочетании с книгами Винера вызвали огромный интерес к разумным машинам. В 40-60-е годы все больше кибернетиков из университетов и частных фирм запирались в лабораториях и мастерских, напряженно работая над теорией функционирования мозга и методично припаивая электронные компоненты моделей нейронов.
     Из этого кибернетического, или нейромодельного, подхода к машинному разуму скоро сформировался так называемый "восходящий метод" движение от простых аналогов нервной системы примитивных существ, обладающих малым числом нейронов, сложнейшей нервной системе человека и даже выше. Конечная цель виделась в создании "адаптивной сети", "самоорганизующейся системы" или "обучающейся машины". Все эти названия разные исследователи использовали для обозначения устройств, способных следить за окружающей обстановкой и с помощью обратной связи изменять свое поведение в полном соответствии с господствовавшей в те времена бихевиористской школой психологии, т.е. вести себя так же как живые организмы.
     Основной трудностью, с которой столкнулся "восходящий метод" на заре своего существования, была высокая стоимость электронных элементов. Слишком дорогой оказывалась даже модель нервной системы муравья, состоящая из 20 тыс. нейронов, не говоря уже о нервной системе человека, включающей около 100 млрд. нейронов. Даже самые совершенные кибернетические модели содержали лишь несколько сотен нейронов. Столь ограниченные возможности обескуражили многих исследователей того периода.
     Одним из тех, кого ничуть не испугали трудности был Фрэнк Розенблат, труды которого отвечали самым заметным устремлениям кибернетиков. В середине 1958 года им была предложена модель электронного устройства, названного им персептроном, которое должно было бы имитировать процессы человеческого мышления. Персептрон должен был передавать сигналы от "глаза", составленного из фотоэлементов, в блоки электромеханических ячеек памяти, которые оценивали относительную величину электрических сигналов. Эти ячейки соединялись между собой случайным образом в соответствии с господствующей тогда теорией, согласно которой мозг воспринимает новую информацию и реагирует на нее через систему случайных связей между нейронами. Два года спустя была продемонстрирована первая действующая машина "Марк-1", которая могла научится распознавать некоторые из букв, написанных на карточках, которые подносили к его "глазам", напоминающие кинокамеры. Персептрон Розенблата оказался наивысшим достижением "восходящего", или нейромодельного метода создания искусственного интеллекта. Чтобы научить персептрон способности строить догадки на основе исходных предпосылок, в нем предусматривалась некая элементарная разновидность автономной работы или "самопрограммирования". При распознании той или иной буквы одни ее элементы или группы элементов оказываются гораздо более существенными, чем другие. Персептрон мог научаться выделять такие характерные особенности буквы полуавтоматически, своего рода методом проб и ошибок, напоминающим процесс обучения. Однако возможности персептрона были ограниченными: машина не могла надежно распознавать частично закрытые буквы, а также буквы иного размера или рисунка, нежели те, которые использовались на этапе ее обучения.
     Ведущие представители так называемого "нисходящего метода" специализировались, в отличие от представителей "восходящего метода", в составлении для цифровых компьютеров общего назначения программ решения задач, требующих от людей значительного интеллекта, например, для игры в шахматы или поиска математических доказательств. К числу защитников "нисходящего метода" относились Марвин Минский и Сеймур Пейперт, профессора Массачусетского технологического института. Минский начал свою карьеру исследователя ИИ сторонником "восходящего метода" и в 1951 году построил обучающуюся сеть на вакуумных электронных лампах.
     Однако вскоре к моменту создания персептрона он перешел в противоположный лагерь. В соавторстве с южно-африканским математиком Пейпертом, с которым его познакомил Маккаллох, он написал книгу "Персептроны", где математически доказывалось, что персептроны, подобные розенблатовским, принципиально не в состоянии выполнять многие из тех функций, которые предсказывал им Розенблат. Минский утверждал, что, не говоря о роли работающих под диктовку машинисток, подвижных роботов или машин, способных читать, слушать и понимать прочитанное или услышанное, персептроны никогда не обретут даже умения распознавать предмет, частично заслоненный другим. Глядя на торчащий из-за кресла кошачий хвост, подобная машина никогда не сможет понять, что она видит.

Вопросы для самоконтроля

1. Какие счетно-решающие устройства существовали до появления ЭВМ?
     2. Какие имена в истории вычислительной техники вам известны? Что с ними связано?
     3. Что такое элементная база? Как она влияет на смену поколений ЭВМ?
     4. Как развивалась компьютерная техника от поколения к поколению?
     5. Что такое "фон-неймановская архитектура"?
     6. Когда и почему произошло разделение компьютеров на классы?
     7. Что такое сервер?
     8. Каково назначение суперкомпьютеров и какова тенденция их развития?
     9. Каково назначение персонального компьютера?
     10. Как вы представляете себе промышленный компьютер?
     11. Что такое hardware и software? Что из них важнее?
     12. Каковы назначение и характеристики микропроцессора?
     13. Для чего служит память? Каких типов она бывает? Зачем компьютеру память разных типов?
     14. Что входит в видеосистему? Назовите ее характеристики.
     15. Что такое периферийные устройства? Какие виды этих устройств вы знаете?
     16. В чем заключается принцип открытой архитектуры?
     17. Какие компоненты ПК расположены в его системном блоке?

Разработка Института дистантного образования Российского университета дружбы народов, 2006